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I

GENERATION OF A MULTIVARIATE DISTRIBUTION

FOR SPECIFIED UNIVARIATE MARGINALS AND

COVARIANCE STRUCTURE

I. INTRODUCTION

During a discussion pursuant to a proposed new nonlinear convolution

filter of the Wiener type (I], the problem arose of verifying the accuracy

of this filter with respect to the standard linear Wiener filter. This

would require the generation of a nongaussian stochastic process, since

for the gaussian case, for simple additive noise, the linear filter cannot

be improved upon. (See, e.g., t51, Chapter 3.) For purposes of

sensitivity analysis, it was agreed that choice of the scalar marginal

random variables and covariance structure of the stochastic process

should be made as wide as possible.

Consequently, the following three-stage statistical problem arose:

Given a set of univariate marginal probability distributions:

(1) Determine the class of possible correlations between random

variables having these distributions.

(2) Determine, for each allowable set of correlations in (1), a

corresponding (joint) stochastic process yielding back the given set of

marginals.

(3) Establish a procedure for generating outeomes of each stochastic

process specified in (2).

Manuscript submitted October 24, 1980.
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This brief memorandum addresses itself to the above problem, and

under mild restrictions, answers it in the affirmative , when the set of

univariate probability distributions is finite.

In treating this problem, two byproducts resulted: A simple method

for the special case of determining a bivariate distribution, given two

marginals; and a transform of probability technique from a multivariate

uniform to any of a wide class of multivariate distributions, generalizing

the well-known univariate procedure. These results are presented in

Appendices A and B.

2



II. ANALYSIS

Following a cursory view of the available literature, Johnson and

Kotz' text [2], Chapter 34 (pp. 1-36) and Chapter 42 (pp. 273 at passim)

was found to present a brief survey of techniques which relate to part (2)

of the problem posed here, without involving explicitly the specification

of the covariance structure. Mardia's monograph [3] has a much more

extensive treatment of the problem. Some of the results presented here

are, in part, extensions of the Frhchet-Nataf 'translation method' for

bivariate families (which do not particularly address the specification

of the covariance matrices), exhibited in [3].

In the following development, let, for each index i, i - 1, ... ,

be any univariate marginal random variable with ordinary probability

density function f., probability distribution function F., mean Ai,

2
variance a.. S a. , median e. and mean absolute deviation about theI I I I

median %Yi. all assumed known.

As usual, EF(X) and C6vF(X) denote expectation and covariance matrix

of random variable X with respect to distribution F, etc.

T denotes the probability distribution function corresponding to the

standardized normal scaler distribution n(O, 1), while denotes the

probability density function for n(O, 1). Q m (P) 1 < denotes

,an arbitrary (positive semidefinite) m by m correlation matrix, where

P land ijI :s. 1, pij - corr(ti, j) -
1f (!d fL (?j

Denote also 1 (l)(m by 1), 6 Om=( )(m by 1).

x X = (1) ,where xi ER is any outcome of marginal random

variable x. (which can be arbitrary, unless specified) corresponding to

f.; i - 1, ... , m. All monotonic properties of distribution functions

and positiveness of densities are with respect to an assumed interval of

support.
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For 9 - I and I"1 T , define the functions F(.;Q ): Rm. [0,1],
m m mm m

where for any Xm FRm

m

F(X;I ) _ i1 F.(x.) (1)

/m

F(X ;l T) df min F.(x.) * (2)

m * Rm

Define also F (m):R - [0,1], by, for all X eRm(m)m

F(M) (Xm dfm , (xi) - (M-I), 0) (3)Fin -.. mx i,1 ,,.,m~ i f

Then the following properties hold (see (3], pp. 30-35, for the

bivariate case of m - 2):

Lemma I

(a) F( ;Im), F( ; I), and F(m) are all m-variate probability

distributions possessing F, F as marginal distributions.1., mn

(b) For any joint probability distribution F possessing

marginal distributions F1  F as above, for all X mR m ,
1,..., m in

F *)(X ) < F (X ) < F(X ;Im,l T) (4)
(in) m- l,...,m in m in

(Proof: Omitted as a straightforward generalization of the results

in (3].)

Remarks

1. Note the case of F - F( ,Im ) for (4); F( ,Im) is the probability

distribution function corresponding to l,. being statistically
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independent.

2. F( ; m .l m ) corresponds to all being monotone

increasing functions of each other. This implies the unique relation

FI(xI) - F2 ( 2) = (n) (5)

i.e.,

F. (F ( .)): i - 1,...,m,

provided each F. is a monotone increasing function. Thus, if g:Rm R is

any function,

I Xl
Rg (x )d F (x ;l gTR F2

1 F1 (x1) )dF (x I
Fn )F (x

among several representations.

3. F(m) corresponds to the functional relation

m mT F ( i ,m -1(7)

1-1

Lemma 2

For any i # j, 1 < i, j < m, and any joint probability distribution

Fi j possessing fixed marginal distributions F., F., and densities fit

f,, with f. > 0

5



C& j < EF ((xi x2 < ij (8)

where

df 2

(x. - F- I (Fi (xi)) d (x i () :

x.eTR
22

.(.F (F.(x.)x dF(x)(9x .SR .'-1

J

the latter two relations holding, if F. and F. are monotone increasing;

and

j F (10)
F£2 - -l 2

"xfJ (x. - F-I (I-F i (x i ))) 2dF i (x i)
- Ix.eRI II

f .r (F- I (I-F (x.))-x) 2dF (x)
X.ER

Again, the last two equalities hold, if F and F are monotone increasing.

Upper equality in (8) holds for F. . - F( ;12"12T); lower equality

holds for F.j - F ( 2 ).

(roof:

Using Fubini's Theorem on iterated integration and Lemna 1 (a) for

m - 2,
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2 2
E - f ( f (x.-x.) dF,,i.)(x ix ))dF (x)
a; x. R x.>x

2 _ f f x 2 (0)E T , - (xx) (x (x.)EF( ;l 2 12 T) ( ' j ) 2 =x.eR x.>x. J x('jJ()iIJ) (x Ixjdf (xi

J -

Now the conditional distribution functions F 0lJ) (xIxJ) -

F. (xi,xW)/f.(xi) and F (xx )  F(x,x ;I21 T)/f(x)
ij i j )(i il22)

Thus Lemma I (b) (eq. (4)) implies that for all xi'XjeR, F (ij)(x Ix J ) <

F(j) (xjlx  Since for x fixed, (xi-x) 2 is an increasing function in

x i , it follows that (see, e.g., Lehmann [4], page 73, Lemma I and, page

112, Example 11) for all xi > x., for any fixed x.,

J (xi ) 2 dF i 0IJ) (x IxJ

i-!Xj(12)
> (xi-x) 2dF() (x i x)x>x. i (i) I (x2

Substituting (11) into (12) yields the lower inequality in (8).

By a similar argument, reversing inequalities from Lemma 1, yields

the upper inequality in (8).)

The next result establishes the allowable range of values for

Corr(*i,*j) for given marginal densities f. and f..

Theorem I

Let i'*J correspond to fixed densities fif., respectively,which

are positive, for I 0 j; I < i, j < m.

Then for any joint bivariate distribution Fij possessing marginals

fi 'fi'

I I -i i i i i 11 1 1 1 1 I / I .. .. .. . ..... ". ..



Yij Corr F.(xi' x) Tij, (13)
Ij

where

df0 2 02 2 (P'j2" j

Y. a - + + (14)
I j

df a.2 + a.2 + (ji .- )2  a a..
T. df i aJa (15)

I j

and a.., 8.. are given in Eqs. (9) and (1O).
i

Proof:

Using Lemma 2, expand out the expectation in Eq. (8), yielding a

bound on EF . (; iyj ) . Subtracting ji. .'lJ and dividing by a ia yields

the final results. )1

Remarks

Suppose i 0 j; 1 < I, j < m.

1. Upper equality to T.. in (3) is achieved for F.. W F*
Ii 1i (2)'

lower equality to yi.' for F.. = * I2T). Thus, -1 < yij < T.. < 1.

2. Assuming that F. and F. are monotone increasing:I j

2 2Tij - i ff a.. - (a i-a.) + (I i-1)1 (16)

Yij "-1 iff a - (ai+0j)2 + (ji-pj) 2  (17)

A sufficient condition for T.. - I to hold is
ij

8



F.(- )  F F ((.-b'j) a'j (18)

for any constants b. . and a. 0> . (Thus, it holds for F. = F .) ThisIJ IJ I j

value is achieved if x. a..x. + b:. = F. -I (F (x)).
ij Ij I J

A sufficient condition for y ij -1 to hold is

F. l() - I-F ((b:-')/a'j) (19)
I J i I i

for any constants b.' and a;. > 0. This value is achieved ifij ij

:- x a + bi' = F. ' (1-F.j )).I j Ii I

3. In particular (corresponding to b. = 0, a..= 1, b.A 2)1.,
0i ij ij I

2";T =1), if F. - F. and is a symmetric function about i.M = ,I i.e.
' ' i I _

Fi(x i) = 1 - Fi(2i - xi), for all x.iR, then it follows that %.. - 0
SI i I IJ

(this does not require the symmetry condition), T = 1, B = o.2 -

ij ij = c

40. 2 and..i -1.

Now, denote for any m by m correlation matrix m , the m-variate

zero-mean gaussian distribution Nm (0 ,M m) with corresponding probability

density function )Pm and probability distribution function T Om. Define,

for given monotone increasing marginal distribution functions FII, ...

Fm ,transform TM :R -) Rm where, for any Xm ERm ,

F M''x )
Tm (Xm) df (Fm MX M)) (20)

with the inverse transform

9



A.

-1--X -1l(F m(X m)) (1

Next, define the function F( ;Pm): Rm [0,11, where for any

X ERm ,

m

F(Xm;Q m) = TQ (Tm-1 (Xm)) (22)
m

(See [3], pp. 30-35, for the case m = 2.)

Finally, Jet V_ ) I be any random variable corresponding to

N(OmP). (Thus, ea v. is distributed as n(0,l).)

The major result of this is presented in the following theorem:

Theorem 2 (Extension of Frechet-Nataf's Translation Method [3])

Let F1  ,Fm be m given monotone increasing scalar marginal

probability distribution functions with corresponding positive densities

f fm' and random variables x x

Then, for any correlation matrix Q2m W (P~ij)li,j<m (which must be

always at least positive semidefinite) such that

Yij < P;j < Tij (23)

where yij and T.. are given in eqs. (14) and (15), for all i j,

I < i,j <m:

(a) There exists a corresponding correlation matrix 0m - (p ij)iij'm

such that F( ;Q m) is a joint m-variate probability distribution of random

variable X df ,which, possesses marginal probability distribution

10



functions, densities and random variables Fl,..Fm,f,,. m an ,...,Mf a ,

respectively, such that

Corr (Xm ) ur m (24)
m( ; m
m

(b) Random variable can be considered in the following functional

relationship with respect to V

X =Ti(V ) (25)
~NM m Nm

(c) For m - (T ij)l<ijm(Tii 1 1), the upper bound in eq. (23), we

can choose Q I .1 T and F(';l m T ) is the same as previously definedcncos m mm mm

in Eq. (2).

(d) For Q = I , we can choose Sm - I and F(.;l ) is the same as
m m m m m

previously defined in Eq. (1).
I

(e) For 0' with at least some entires p. . Yij' the lower bounds in (23),
m I

we can choose corespondingly in Qm' Pij 1, which yields the bivariate

F.. = F( ; (_,).( ) = F2 as given in Eq. (3).

(Proofs:

(b) follows from (22). (c), (d), (e) all follow from basic properties

of m-variate gaussian distributions.

For (a): Without loss of generality, consider for any 0 m' the first

marginal component of F(Xm ;S M):

(F(Xm;R)) I - F((! m) k ( 0)
m 

" 
11)



+F (F (Tx(F (x))(

Thus, (F( ;nm 10 m is arb. pos. semidefinitel 1 -a fa.mily of mn-variate

distributions of m yielding back the required marginals. Clearly,

for any fixed 1 ,0 J , Corr(F( ; (k~j i ndeed

a continuous function of Q - In fagt~of Pi.- which achieves its maximum

value (see Theorem 1 and ensuing remarks) T i for P II T -1),

and its minimal value yj-for 92 such that p,, -I i.e., for bivariate

marginal Fi m F (2) w F( ;-)-Thus, Cor can taej

value between y ., and T..j by proper choice ofSL .)

Remarks

1. If F I F 2 . - F mis a symmetric function about meanu

(F I(x I) F I F 1(2p.j-x I)), then y.. - -1 and T i. - 1, and thus, S1 M in

Theorem 2 can be arbitrary (and (23) is always satisfied).

2. Rewriting q. (24) in scalar formI

P j- Corr(x11 x ) Corr(xi,x) , (26)

for any given Yj !P' <T. ,where Fj is the corresponding bivar-
ij -IJ'I

late marginal distribution function of F, and Om a(0pj)

Lancaster and Kendall & Stuart (see (3), page 33) have shown that for all

lI ,J.1m,

IJ I~ ~ (27)

12



with strict inequality holding in (27) for i 0 j, unless the F.'s are

all Saussian distributions.

For any given P.j, with stricL inequalities both holding in (23),
I

solving for pij in (26) is equivalent to solving for Pij in:

P = H.. (P.) (28)

I~ J(i/o "i) -a 0 F i" I vi))-U i ) (F j "  (M v i))-11j)o

v R - I (Vi ' ,j)idvidv,

! j j

where

' .(v,v ) = (I/27r. i4 0)).exp-{ (i-pi)

Si2+ v 2 - 2p.vv.)) (29)
Pij j  "2 ij i j

Thus, for purposes of implementation, the integral on the right hand

side of (28), H j(Pij) should be tabulated as a function of pij' for

-! < PJ.. < i. Then that pij satisfying (28) could be found by a graphical

method.

3. For m-2, an alternative simple method for constructing the joint bi-
variate probability distribution for specified marginals F and F2  is

presented in Appendix A.

4. For general m again, Eq. (25) can be used to generate outcomes of

X . This thus depends on the generation of outcomes of V . A standard

procedure, is to first in effect decompose Pm D m Pm T, where Pm

is the orthonormal matrix of elgenvectors and Dm  is the diagonal matrix

m
of eigenvalues of m*Then the random variable V can be written as

13



V - P W where random variable W is distributed N (0,Dn m ' m I wm

Hence, the w.'s are distributed statistically independent with w.

2
distributed n(O, d. ) where

Dm LOdm2 Finally, we can apply the fundamental transformation

of probability from a uniformly distributed random variable z. over

[0,1] : W. -' 1 (z1) ; i-l,..,m. Hence we can first generate statis-

tically independently outcomes zI,..,z m, obtaining in turn, outcomes

w,. .,wmp forming m' and in turn finally, V' qm

5. An alternative procedure for not only generating V , but for

obtaining essentially any m-variate random variable by a transform of

probability from any convenient initial m-variate random variable - such

as a uniformly distributed one over the unit m-cube - is given in

Appendix B. This technique could be of especial use when non Saussian

random variables are sought and/or when m is large, since no matrix,

inversion is required. However, the forms of the marginal probability

distribution functions are required.

14



Iii. SUMMARY

The problem of constructing and realizing outcomes for a multivariate

distribution compatible with arbitrary given scalar marginal distributions

and having a specified correlation matrix has been considered here. The

problem is essentially answered in the affirmative in Theorem 2. In addi-

tion, an apparently new multivariate transformation of probability techni-

que which is triangular in form is presented (Appendix B) for generating

outcomes of a given random variable from a more convenient distribution.
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APPENDIX A

Alternative Construction of a Bivariate

Distribution for Specified Marginal Distributions

and Covariance Matrix

Let x x be two given marginal scalar random variables with prob-

ability density functions f,, f2 continuous about their medians 61V e2

possessing (finite) variances a, 022 ; denote their absolute first

moments about their medians by uj , , respectively.

Let E- (aiJ) <ij<2 be any given positive semidefinite matrix,

such that

2ii 1=1i i-l, 2 (A-I)

and

19t21 < Min(uj U, l2 )  -(A-2)

Define functions f and h. by, for all outcomes

X = 2 R 2 ,
x 2)

2 2

fx df i (x.) + 11 h I (x i ) (A-3)

i-i i-I

df fi(xi) , for all x > (A-)
hf = i _f (Xi for all xi  < 8i

and

12 1a2X X-2-, ; if a 12 > 0

-, 71- 2l  /lal 21:
l 2' N i V 12 < 0 (A-5)

17



.- .., -.

Then f is a joint probability density function of X (-
having marginal p.d.f.'s fit f 2  and such that with respect to f,

- (E - ( ) and Cov( ) -(A-6)

Proof:

Since (A-2) and (A-5) imply 1 , then (A-3) and (A-4) imply

that f(x) >0O, for all Xc R 2. Clearly, by construction in (A-4.)

h h(X )dx. 0; i-1,2 (A-7)

implying

2
f f (X)dX fJi n f.i(x .dx. 1

and f is thus a p.d.f.

Also, for example, fromn (A-7),

,,f(X)dX2  f (x) + 0
2 1 f 1 )

verifying that the marginal p.d.f.'s of f are f Iand f 2

N~ow



( X ff(Xd S f(d)

XeRXe Rm )<i<2

where, for example, using (A-7) again

£ 1 f(X)dX f f(x )dxj +

5x Ih I(x I)dx I fh 2 (x 2)dx 2

aE(x1)

Finally,

COV(W - f (x.- E (?E))(x.-E~x f (X) d) I<ij1
Xe

For i-j, using (A-7)

var( ) f f(x E(I )2 f(X)d(X)

a (x.-E(x.) f (x )dx ff(x.)dX,

Io V i j

+ f x-().(xxid) +ofT (x.)dx.

- ~ 1 E(xo)) 2f (x .)dx1

ai2

19



For i 0 j, i.e., 1 1, j 2,

Cov(, 1X 2) - J'(x -E(x )(x -E(x ))f(X)dX

(X J(-E(x W)f(x )dx) (x Ex )d

(x1-E(x ))h (x )dx -Ex()h(x)d

00+

f (x 1-e1)h (x I)dx1) S(x2-62 )h 2
(x 2)dx 2)

using (A-7)

- 12
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APPENDIX B

Multivariate Transformation of Probability

Technique for Generating Outcomes of

Arbitrary Random Variables

The univariate transform Y = F(X) of a random variable X with

continuous cumulative probability distribution F cAuseg Y to be

uniformly distributed over [0,1]. This widely known result is perhaps

the most useful in simulating outcomes of one dimensional random variables.

(See, e.g., the basic texts of Fisz, Wilks, Cramnr, Feller, etc.) However,

the multivariate extension of this transform is another matter and this

author, to the best of his knowledge, has not seen such a result.

This appendix displays a natural extension of the fundamental trans-

form of probability theory, which hopefully will be of help in simulating

outcomes of arbitrary multivariate random variables.

Let X = (7l be a given random vector over Rm with positive

m

probability density function f. Define transform Tf: m  Rm  by,

for any outcome X -(l Ci R
x M)

Tf ) Tf,m( X)) (

where
x.

Tfi(X) AL (i/fi+l(X(i+l)) "J' i((i"j;))dsi , (8-2)

s 2 (I+1

21



ii for i - I, .. , m, and, for j = 1, .. , m

X E 0) x j+l  (B-3)x

and f. is the probability density function of marginal random vectorJ

X(j) where also

X(mj) d and f, l(X(m 1 )) d 1, and note the special

case X(!) = X, f =f

Then, the random vector Y = TM(X) is uniformly distributed over the

m-cube [0 ,1 ]m.

C Proof:

First note that

+00 S.

Tfi(x) < (1/fi~l (X (i4l)))* J fi ( x" ) ds

- (/fi+ (x(i+])Dfi+l  x(i+l))

= 1

for i - 1, .., m, implying, for all Xc Rm

Tf(X) £ [0,1] i (8-4)

Next, it easily follows that

dTf(X) ( aTf X))- - ( -5)
dX .(e)

J <I , j.mL -- _____



is an upper triangular matrix, i.e.,

2LLLLX. = (B-6)
ax.

if j<i ; l<i,j<m, with (2) implying

aT f'i(X) f (X
_ )f (X ) (B-7)

ax. i+1 (i+)

for iI ,..,m.

Hence, (B-5) - (B-7) implies

dTf(X) m aTf M(X)
Idet (f I fl- '- I (B-8)dX i=  l ax i

= f(x)

The positivity of f implies that from (B-2), for X 0+0 fixed,

Tf (X) as a function o;' x. only, is monotone increasing fcr i=,..,m,

implying that T is a one-to-one function. Indeed, by defining, for any

fixed X he function F, where for any X c R,
m fixed (i+l) , th fnto Fi;x~i l

F~x f f. d (8-9)Fi; ;0+0) s-=-i X(~

for i-l,..,m, with the special case

F () F(X) = fm(S) ds,
m;X(m+l) m

and denoting the functional inverse by F , then it follows that
2 ;X(i+])



the nvese ran-or T : Rm Rm
the in vese transform T R is obtained, for any outcome

f

Y , ,by successive substitution:

T (Y)X -- T ' I (Y) df f,

---- (B-to)
TIf~m ( Y)

where using the X(i) notation

m f,m F m m

-1 (y)df
X m_1  = T l  (Y)- F_ I "-; (Ym ! )

m

Xm~ fT -1 ) F (y
M_2 =T 2 (Y) = F m_2;X( 1)m-2

X T-1 (Y FIx2-+,(y) . F7. y1  (-i!Tf1  ' 2)

2 f. 2;X (3 1(2

X T= t I  (Y) F= F I  (yI) .(-l
I f ill ; X ( 2 )

Combining the one-to-one property of Tf, with (B-4) (8-8) and the

matrix relation, for all Y E (0,11 m

dTfI (Y) dTf(X) (
dY dX )X=Tf()

yields, for the p.d.f. g of Y at outcome Y, by the standard

24



transformation of probability,

dT; (y)

g(Y) - f(Tf1 (Y)). ldet ( dY )I

= f(TfI (Y))/f(Tf (Y))

=1

Remarks

m
1. It immediately follows that Y is uniformly distributed over [0,1].,

iff each scalar marginal random variable component of Y is statisti-

cally independent, identically distributed uniformly over [0,1].

2. Let Y be a random vector uniformly distributed over [0,11m
. Let f

mbe a given poisitive p.d.f. over R . Then the random vector

X Tf -') has p.d.f. f over Rm .

3. Let X be a given random vector over Rm with positive p.d.f. f,

m
and let h be any given positive p.d.f. over Rm . Then the random

df -,
vector Z T L(T(X)) has p.d.f. h over Rm .
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